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Abstract—Mass spectrometry based high throughput proteomics are used for

protein analysis and clinical diagnosis. Many machine learning methods have

been used to construct classifiers based on mass spectrometry data, for

discrimination between cancer stages. However, the classifiers generated by

machine learning such as SVM techniques typically lack biological interpretability.

We present an innovative technique for automated discovery of signatures

optimized to characterize various cancer stages. We validate our signature

discovery algorithm on one new colorectal cancer MALDI-TOF data set, and two

well-known ovarian cancer SELDI-TOF data sets. In all of these cases, our

signature based classifiers performed either better or at least as well as four

benchmark machine learning algorithms including SVM and KNN. Moreover, our

optimized signatures automatically select smaller sets of key biomarkers than the

black-boxes generated by machine learning, and are much easier to interpret.

Index Terms—MALDI/SELDI data, ovarian cancer, colorectal cancer, biomarker

selection, automatic signature discovery
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1 INTRODUCTION

EARLY detection and risk assessment of cancer are crucial for suc-
cessful intervention strategies. Identification of validated bio-
markers, as a non-invasive screening method, is recognized as a
major breakthrough in cancer detection [1]. Human body fluids
such as serum or plasma are easily accessible sources of biomarker
discovery, due to their wide range of molecular components linked
to cellular metabolism by-products. In proteome analysis, proteins
with low molecular weight (LMW) are of great interest, because
cellular and extracellular enzymatic events generate small frag-
ments, playing an important role at the level of cancer-tissue
micro-environment [2]. Mass spectrometry techniques are consid-
ered to be a promising approach for LMW biomarker discovery.

Laser desorption ionization, either surface-enhanced (SELDI) or
matrix-assisted (MALDI), are the two commonly used techniques
to generate mass spectrometry data set. Each such mass spectrum
provides thousands of mass-to-charge (m/z) ratios paired with
corresponding peptide intensities. Experimental design for bio-
marker discovery requires adequate statistical sampling, appropri-
ate handling and storage of serum or plasma samples until
analysis, mass spectrometry processing of the samples, and
detailed data analysis of the generated mass spectra. Our paper
focuses only on this last step.

To handle the high dimensionality and inherent variability of
biomedical mass spectra, “machine learning” algorithms have

been applied to automatic discriminate between mass spectra.
Unsupervised learning, such as clustering [3] or self-organizing
maps [4], has been used to partition mass spectrometry data sets
into homogeneous subgroups. Supervised learning, which ana-
lyzes pre-classified mass spectrometry data sets to generate auto-
mated classifiers, has been applied for cancer discrimination:
artificial neural networks [5], K-nearest neighbors (KNN) [6], deci-
sion trees (DT) [7], [8], [9], [10], random forests (RF) [11], linear and
quadratic discriminant analysis [12], support vector machines
(SVM) [13], [14], [15]. Machine learning techniques have often
yielded good classification accuracy, but they typically generate
“black-box” classifiers, which are not easily interpreted biologi-
cally. To develop more pragmatic mass spectrometry classifiers, a
key step is to automatically discover “signatures”, i.e., combina-
tions of a small number of protein biomarkers strongly discriminat-
ing between cancer states [16], [15], [17], [18].

We have developed new algorithms for automatic discovery of
biologically interpretable signatures discriminating between vari-
ous cancer states, by automated analysis of mass spectrometry data
sets acquired from multi-stages cancer patients groups. We applied
simulated annealing optimization techniques [19], [20], [21] to max-
imize discriminating power among all possible signatures.

We have tested our signature discovery algorithm on a new
MALDI-TOF data set for colorectal cancer and two well-known
ovarian cancer SELDI-TOF data sets. We have generated explicit
signatures with high discriminating power between the various
cancer patients groups involved in these data sets. We have com-
pared performances between our optimized signature based classi-
fiers and several benchmark machine learning techniques.

2 DATA SETS

2.1 Colorectal MALDI-TOF Data Set

One hundred and four colorectal cancer samples and 15 control
samples were provided by first Surgical Clinic, Department of Sur-
gical, Oncological and Gastroenterological Sciences, University of
Padova, Italy. Between 2002 and 2005, the 104 cancer patients
underwent surgeries and histopathological diagnosis. Among
them, 27 were diagnosed with colorectal pre-cancer lesion (Ade-
noma), 40 with Early Colorectal cancer (stage I or II), and 37 with
Late Colorectal cancer (stage III or IV). The 15 healthy patients all
received colonoscopy and were diagnosed to be unaffected.

A 10 ml blood sample was collected from each patient into a DB
Vacutainer during the surgery or colonoscopy and transferred to
the laboratory within 4 hours of collection, to be centrifuged at
3,000 rpm for 10 min. Plasma samples were then collected from the
supernatant and stored in aliquots at �80� C in the Tumor Tissue
Biobank of Surgical Clinic I as well as during transportation, until
analysis.

For efficient removal of high molecular weight proteins and for
specific isolation and enrichment of LMW species present in 15ml
of plasma, we used a novel three steps size-exclusion strategy
based on Mesoporous silica chips, fabricated by Dept of Nanome-
dicine (Methodist Hospital Research Institute, Houston, Texas)
[22]. Mass spectra were acquired in linear positive-ion mode (range
800-10,000 “m/z” ratio) on a Voyager-DE-STR MALDI TOF Mass
Spectrometer (Applied Biosystems, Framingham, MA) at Research
Center of Protein Chemistry Core Laboratory (University of Texas
Health, Houston, Texas). The manufacturer provided spectrometer
accuracy was 0:3 percent. Only one blood plasma sample was
extracted from each subject, but two “replicate” mass spectra were
acquired from each blood plasma sample.

In total, 238 mass spectrometry replicates were acquired from
four patients groups, with two mass spectrometry replicates per
patient: the Control group CTR of 15 patients, the Adenoma group
ADE of 27 patients with precancer lesions, the group ECR of 40
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patients with Early ColoRectal cancer (stage I-II), the group LCR of
37 patients with Late ColoRectal cancer (stage III-IV). We also stud-
ied the whole cancerous group CRC of 104 patients pooling
together all three cancer groups ADE, ECR, LCR. Each mass spec-
trum provides about 36,900 m/z values between 800-10,000 on the
x-axis and the associated “peptide intensities” on the y-axis.

2.2 Ovarian SELDI-TOF Data Sets

We have also tested our approach on two well-known mass spec-
trometry data sets of ovarian cancer, which can be freely down-
loaded from NCI-FDA clinical proteomics databank (http://home.
ccr.cancer.gov/ncifdaproteomics/ppatterns.asp).

The data set “4-3-02” consists of 116 control (normal or benign
patients) mass spectra and 100 ovarian cancer mass spectra,
acquired manually, using a WCX2 protein chip and a Ciphergen
PBS1 SELDI-TOF mass spectrometer with 0.1 percent accuracy.
Each mass spectrum listed 15,154 m/z values in the 0-20,000 range.
Baselines were removed prior to public access. This data set was
studied by [4], [6], [23] who respectively reported discrimination
accuracies of 97.5, 100 and 86.66 percent.

The data set “8-7-02” gathers 91 control and 162 ovarian cancer
mass spectra, acquired by robotic hardware using a WCX2 chip
but with an upgraded PBSII SELDI-TOF mass spectrometer with
0.1 percent accuracy. Each spectrum gave 15,154 m/z values in the
0-20,000 range. This data set was studied by [6], [24], [25] and [23],
with reported discrimination accuracies of 100 percent.

3 METHODS

3.1 Pre-Processing

To lower data dimensionality and reduce acquisition “noise”, pre-
processing of mass spectra is a standard first step, often imple-
mented via commercial interactive softwares. Pre-processing
principles are well known, but implementation details vary consid-
erably, and are often not accessible in commercial softwares. For
better context control, we have developed our own sequence of
pipelined pre-processing steps for each raw mass spectrum.

1) Intensities are rescaled (normalized) so that total peak
intensity equals 1.

2) Smoothing at current abscissa x is then implemented by
moving average on a sliding window x� ux, where the
fixed ratio u is user-defined.

3) Noise values are extracted by subtracting smoothed spec-
trum from raw spectrum. Local noise level at x is evaluated
on a sliding window x� vx where the ratio v is user-
defined.

4) Baseline is computed by moving medians within sliding
windows x� wx where ratio w is user-defined. Baseline is
then removed from smoothed spectrum. Using medians
instead of means avoids discarding small peaks in the
vicinity of large peaks.

5) Peaks above baseline are then extracted from the smoothed
spectrum to retain only the “strong peaks”, for which
“peak strength” (ratio of peak height to local noise level) is
higher than a threshold th fixed by the user.

3.2 Reference Biomarkers and Activation Frequencies

For a MALDI or SELDI spectrometer with manufacturer accuracy
r, any peptide with “true” m/z ratio x will yield randomly shifted
acquisition values within the “uncertainty window” x� rx. In
view of these acquisition uncertainties, we fix a sequence of
“reference biomarkers” Bj at abscissas Bj ¼ að1þ rÞj, with
0 � j � n where B0 ¼ a and Bn ¼ b are the smallest and largest
observed m/z values among all spectra in our training data set.

We say that a reference biomarker B is “activated” by a mass
spectrum M if at least one strong peak detected in M is positioned
within the uncertainty window of B. Otherwise, we say that ”B is
not activated byM”.

Given two distinct groups Gþ and G� of observed mass spectra,
we characterize each reference biomarker B by its “activation
frequencies” fþðBÞ and f�ðBÞ, defined as percentages of mass
spectra which respectively activate Bwithin Gþ and within G�.

3.3 Selection of Biomarkers with High
Discriminating Power

One can prove that the most powerful test to discriminate between
Gþ and G� on the basis of the presence or absence of a single bio-
marker B is achieved by adequate thresholding for the ratio of acti-
vation frequencies fþðBÞ=f�ðBÞ. This suggests quantifying the Gþ

detecting power of a biomarker B by DþðBÞ ¼ fþðBÞ=f�ðBÞ and
its G� detecting power by the inverse ratio D�ðBÞ ¼ f�ðBÞ=fþðBÞ.
We say that B is a Gþ biomarker ifDþðBÞ > 1 and a G� biomarker
ifD�ðBÞ > 1.

To seek optimal signatures combining small numbers of bio-
markers, we first select a tentative target pool TP ð2kÞ of 2k highly
discriminating biomarkers, namely the k biomarkers with highest
DþðBÞ and the k biomarkers with highestD�ðBÞ.

Good generalization capacity requires k to be small while high
discriminating power forces k to be large. So we successively
implement our signature discovery algorithm for increasing values
of k, and later select an optimal k.

3.4 Automatic Signature Discovery

Given a training data set involving two pre-classified groups of
mass spectra Gþ and G�, we seek to generate various automated
classifiers of arbitrary mass spectra M and compare their perform-
ances. We systematically evaluate the performance level of any
classifier by PERF ¼ ðpþ þ p�Þ=2where pþ and p� are the frequen-
cies of correct classification for the spectra belonging respectively
to Gþ and to G�.

A signature Sig will be any fixed list of r biomarkers picked
within the target pool TP ð2kÞ just defined. Given any spectrum M ,
we count, within the signature Sig, the number uðMÞ of Gþ bio-
markers activated by M and the number vðMÞ of G� biomarkers
which are NOT activated byM. The “Gþ score” of M for the signa-
ture Sig is then defined by sþðM;SigÞ ¼ ðuðMÞ þ vðMÞÞ=r. Clearly,
M will achieve a high Gþ score if most of the Gþ biomarkers
belonging to signature Sig are actually present in M , and if simul-
taneously most of the G� biomarkers belonging to Sig are absent in
M. The signature Sig will have high Gþ detecting power if
sþðM;SigÞ is high forM in Gþ and low forM in G�.

Exchanging the roles ofGþ andG� symetrically defines the “G�

score” s�ðM;SigÞ of M for the signature Sig. Then Sig will have
high G� detecting power if s�ðM;SigÞ is high for M in G� and low
forM in Gþ.

When one fixes a scoring threshold 0 < c < 1, the signature
Sig determines a Gþ classifier by assigning any observed spectrum
M to Gþ if sþðM;SigÞ � c and to G� otherwise. The performance
level PERF ðc; SigÞ of this classifier is defined as above by its aver-
age frequency of correct classification ðpþ þ p�Þ=2. For each Sig,
there is an easily computable optimal threshold c ¼ c� maximizing
PERF ðc; SigÞ over all potential thresholds c. This maximized per-
formance JþðSigÞ ¼ PERF ðc�; SigÞ will define the “Gþ detecting
power” of signature Sig.

Exchanging Gþ and G�, as well as the scores sþðM;SigÞ and
s�ðM;SigÞ we similarly define the G� detecting power J�ðSigÞ of
signature Sig.

Among all potential signatures Sigwithin our biomarkers target
pool TP ð2kÞ, we will now seek two optimized signatures, Sigþ

maximizing the Gþ detecting power JþðSigÞ and Sig� maximizing
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the G� detecting powers J�ðSigÞ. But JþðSigÞ and J�ðSigÞ have
many local maxima, and the set of all potential signatures within
TP ð2kÞ has very large cardinal. To solve this combinatorial chal-
lenge, we implement the separate maximizations of JþðSigÞ and of
J�ðSigÞ by Simulated Annealing as described next.

3.5 Optimized Signature Discovery
by Simulated Annealing

Simulated annealing is a powerful stochastic descent technique to
search for the global maximum of an “objective function” defined
for configurations belonging to a very large discrete space [19],
[20], [21]. Here, we implement a simulated annealing search to find
an optimal signature Sigþ maximizing the Gþ detecting power
JþðSigÞ over the set of all potential signatures Sig included in our
target pool TP ð2kÞ of 2k biomarkers.

Each potential signature Sig can be naturally coded as a binary
sequence of length 2k, where the coordinates equal to 1 correspond
exactly to the biomarkers which belong to the list Sig. Starting
from any initial signature, we successively visit each one of its 2k
binary coordinates, and randomly modify this coordinate accord-
ing to a “simulated annealing rule”. This procedure is repeated
after each sequence of 2k steps.

At step n, the currently visited signature coordinate is ran-
domly replaced by 0 or 1. This tentatively replaces the current sig-
nature Sign by a new signature Signþ1, which is accepted or
rejected with a precise probability explicitly computed in terms of
JþðSignþ1Þ � JþðSignÞ and of a virtual “temperature” Tn ¼ ð0:95Þn
[19]. This iterative search essentially stops when Tn 	 0.

Our numerical implementation involves 200
 2k updates of
signature coordinates per simulated annealing search. We imple-
ment multiple simulated annealing searches and retain the signa-
ture Sigþ achieving the highest value for the Gþ detecting power
JþðSigÞ.

Similar simulated annealing searches are implemented to dis-
cover a signature Sig� maximizing theG� detecting power J�ðSigÞ.

3.6 Signature Based Patient Classification

After computing two optimal signatures Sigþ and Sig�, each mass
spectrum M can be characterized by its Gþ score sþðMÞ ¼
sþðM;SigþÞ and itsG� score s�ðMÞ ¼ s�ðM;Sig�Þ. We then classify
any new spectrumM into Gþ if sþðMÞ � a s�ðMÞ þ b, and into G�

otherwise. The best coefficients a; b are computed by maximizing
the performance ðpþ þ p�Þ=2 of this signature based classifier over
the training data set. Since Sigþ and Sig� were restricted to be
within the biomarker target pool TP ð2kÞ, we denote by PERF ð2kÞ
the performance level of this optimized signature based classifier.

When we have two replicate spectra M1;M2 per patient, we
replace sþðM1Þ and sþðM2Þ by their average sþ and do the same
for s�, before constructing as above the best separator based on the
sign of sþ � ða s� þ bÞ.

We progressively increase k starting with a small value, and
repeat the whole signature discovery procedure until PERF ð2kÞ
reaches a satisfactory plateau.

Representing each mass spectra M by the planar point
½sþðMÞ; s�ðMÞ� provides an efficient graphic display of Gþ and G�

(see example in Section 4.3).

3.7 Cross Validation of Classifier Performance

To evaluate as defined above the performance of any classifier we
need to estimate the frequencies pþ and p� of correct decisions
when the patient is resp. in Gþ or in G�. Since our data sets have
moderate size, we estimate pþ and p� by a classical 10-fold cross
validation analysis. So we randomly split the whole data set into
10 subsets and at each cross validation round, nine of these subsets
are used for training a classifier and the 10th subset becomes
the testing set. The percentages pþ, p� of correct decisions are

computed within the left out 10th set. These training-testing steps
are repeated 10 times, and we evaluate pþ, p� by averaging the 10
partial estimates just obtained. To capture the variability of these
pþ and p� estimates, this 10-fold cross validation is repeated for
100 such random partitions of the whole data set. This provides
two samples of 100 estimates, one for pþ and one for p�. The mean
and standard deviations of these two samples provide our final
estimates of pþ and p�, as well as the associated 95 percent confi-
dence intervals.

4 RESULTS FOR COLORECTAL CANCER MALDI
DATA SET

Our colorectal cancer data set (see Section 2.1) involved 119
patients and 238 raw MALDI mass spectra (two replicates per
patient): the control group CTR and the Colorectal Cancer group
CRC, which was pre-classified according to cancer stage into three
subgroups (Adenoma ADE, early cancer ECR, late cancer LCR).
We have implemented our signature discovery algorithms for four
discrimination tasks: CTR versus CRC, ADE versus ECR, ADE ver-
sus LCR, ECR versus LCR.

4.1 Pre-Processing Results

In our colorectal cancer data set, each raw spectrum listed roughly
37,000 distinct “m/z” ratios ranging from 800 to 10,000. Pre-
processing was implemented as in Section 3.1, with pre-processing
parameters set at u ¼ 0:0003; v ¼ 0:017; w ¼ 0:025; th ¼ 2. We thus
detected an average of 330 strong peaks per spectrum. Fig. 1 dis-
plays the detected strong peaks for one typical raw mass spectrum
within the m/z range ½ 1;800; 2;000 �.

4.2 Biomarkers Target Pools

Our 842 reference biomarkers Bj were positioned at successive
abscissas 800
 1:003j with j ¼ 0; 1; 2; . . .. For each benchmark dis-
crimination task CTR vs CRC, ADE vs ECR, ADE vs LCR, ECR vs
LCR, we then successively extracted target pools TP ð2kÞ of 2k
highly discriminating biomarkers, with 2k ¼ 2; 4; . . . ; 40.

For each benchmark task and each k, we computed two opti-
mized signatures Sigþ and Sig� within TP ð2kÞ and the perfor-
mance level PERF ð2kÞ of the signature based classifier we have
associated above to the pair of signatures Sigþ and Sig�.

Signature based discrimination between cancerous and con-
trol group (CRC versus CTR) reached perfect performance level
100 percent for 2k ¼ 8. For discrimination between cancer stages
ADE versus ECR, ADE versus LCR, ECR versus LCR, our signa-
ture based classifiers reached their respective performance pla-
teaus for 2k ¼ 30; 40; 32.

4.3 Detailed Results for Discrimination between Adenoma
and Early Colorectal Cancer

For signature based discrimination between Gþ ¼ ADE and
G� ¼ ECR, we display in Fig. 2 the iterative maximization of
JþðSigÞ by a simulated annealing search with a total of 6,000 tem-
perature cooling steps. As above JþðSigÞ is the Gþ detecting
power, with Gþ ¼ ADE. As Fig. 2 indicates, JþðSigÞ reaches a
maximum after roughly 4,100 simulated annealing steps and then
stabilizes during the last 1,900 annealing steps. The optimal signa-
ture Sigþ ¼ SigADE achieves correct classification of single spec-
trum replicates with frequency pþ ¼ 91% within ADE and
frequency p� ¼ 95% within ECR, yielding an ADE detecting
power of 93 percent. The second optimized signature Sig� ¼
SigECR achieves an ECR detecting power of 95 percent.

Via the optimal signatures SigADE and SigECR, we compute for
each patient an ADE score sADE ¼ sþ and an ECR score sECR ¼ s�.
The 67 patients belonging to either ADE or ECR can then be
viewed as planar points with coordinates ðx ¼ sADE; y ¼ sECRÞ, as
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displayed in Fig. 3 where final classification is then implemented by
a linear separator.

4.4 Optimized Signatures for Colorectal Cancer
Stage Discrimination

For each one of the colorectal cancer stage discrimination tasks
ADE versus ECR, ADE versus LCR, ECR versus LCR, as well as for
the much easier discrimination between cancerous and healthy
patients CRC versus CTR, Table 1 exhibits separately the signature
selected biomarkers discriminating in favor of each patient group.
More precisely, for each discrimination task Gþ versus G�, we
pool together all the biomarkers belonging to at least one of the
two optimized signatures Sigþ and Sig�; we then split this highly
selective pool of biomarkers into two sets: the Gþ biomarkers and
the G� biomarkers, which we display separately. The simultaneous
presence of several such Gþ biomarkers then strongly points to Gþ

patients, with a similar interpretation for G�.
With two replicates per patient on our colorectal cancer data set,

the signature based classifiers just constructed for single replicates,
are readily extended to pairs of replicates as outlined in Section 3.6.
The performances pþ and p� of these “patient level” classifiers are
summarized in the “patient level” panel of Table 2, where the

“single spectrum level” panel reports the performance based on
single replicate classification. These basic “single spectrum” perfor-
mance levels for our signature based algorithms will be compared
below to the single spectrum performances of machine learning
algorithms in Section 4.5.

Discriminating the control group CTR from the union CRC of all
three colorectal cancerous groups ADE, ECR, LCR, was the easiest
of the four tasks studied here, and was achieved with 100 percent
accuracy, by very short signatures. The three discrimination tasks
between the three cancer stages ADE, ECR, LCR required longer sig-
natures, to achieve fairly good classification levels.

4.5 Performance Comparisons with Machine Learning
Techniques

Colorectal cancer detection by machine learning applied to
MALDI/SELDI data has been studied by several publications. For
discrimination between colorectal cancer and controls, [26] used
support vector machine learning to achieve correct classification
frequencies of pþ ¼ 83� 4% and p� ¼ 89� 3%, [27] used decision
trees to reach pþ ¼ 65% and p� ¼ 90%, and [28] applied K-nearest

Fig. 2. Adenoma ADE versus Early Colorectal cancer ECR: simulated annealing
search for an optimized signature SigADE characterizing the Adenoma group. The
ADE detecting power reaches its maximum 93 percent after roughly 4;100 cooling
steps and stabilizes at that level.

Fig. 3. Adenoma ADE versus Early Colorectal cancer ECR: planar display of
patients scores ðsADE; sECRÞ, computed via the optimized signatures SigADE and
SigECR. Signature based discrimination implemented as above classifies any
patient in ADE whenever the scores of the patient’s mass spectra verify
sADE > 1:06sECR.

Fig. 1.Q2 An example of raw spectrum with 36,930 distinct m/z values is presented in (A). Intermediate pre-processing results within the m/z range½ 1;800; 2;000 � are dis-
played in (B) and (C). (D) highlights the six peaks detected within this range.

4 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 11, NO. X, XXXXX 2014
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racy for colorectal cancer versus control, our signature discovery
algorithm clearly outperforms these three previously published
machine learning results.

We are not aware of previous publications on discrimination
between colorectal cancer stages based on MALDI/SELDI data.
Since our colorectal cancer MALDI data is not published, we have
thus implemented four benchmark machine learning algorithms
on each one of our colorectal cancer stages discrimination tasks:
support vector machines with Gaussian kernel, K-nearest neigh-
bor, decision tree and random forest.

As in [12], these machine learning methods classically charac-

terize each biomarker through the t-statistic t ¼ jmþ�m�j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðsþÞ2þðs�Þ2
p , where

where mþ; sþ and m�; s� are the means and standard deviations of

the biomarker intensities observed in Gþ and G�. The N bio-

markers with the highest t-statistic are then selected as reference

biomarkers. For N ¼ 2; 4; 6; 8; . . . ; we have implemented these four

benchmark machine learning techniques on all our colorectal can-

cer discrimination tasks. In each case, we then selected the N for

which machine learning performance reached a first plateau. The

implementation used the SVM, KNN, DT and RF toolboxes

provided by MATLAB. Note that for SVM, we have carefully

selected the best values for two key learning parameters (cost

“tradeoff” and gaussian kernel “scale”).

Performance comparisons between machine learning and our
signature based discrimination are implemented for classification
of single MALDI spectra, namely, at the “single spectrum level” of
Table 2. Performances were evaluated by repeated 10-fold cross-
validation as outlined in Section 3.7.

Among machine learning techniques, SVM is clearly superior
to KNN, DT and RF. The number of biomarkers used by SVM is
around 40 for the three delicate discriminations between cancer
stages and 10 for the much easier cancer versus control task.
Our signature based classifiers exhibit comparable performance
levels with SVM for all the tasks, but offers two clear advan-
tages over SVM: for comparable performances, our optimized
signatures systematically involve less biomarkers than SVM,
and the associated classifiers are fully and explicitly interpret-
able, which is not at all the case for the black box classifiers
generated by SVM.

5 RESULTS ON OVARIAN CANCER SELDI DATA SETS

For all raw mass spectra in the published ovarian cancer SELDI
data sets 4-3-02 and 8-7-02, pre-processing was implemented as

TABLE 1
Biomarkers in Optimized Signatures for Colorectal Cancer Stage Discrimination

For each discrimination task Gþ vs G�, the biomarkers belonging to either Sigþ or Sig� are first pooled together, before splitting this pool into Gþ and G� biomarkers, dis-
played in two distinct columns. In the signature based classification of a new mass spectrum M, the column under Gþ gathers the peak abscissas whose presence in M
are strong indicators that M is of Gþ type. An analogous statement holds for G�. For each one of these four discrimination tasks, the number of key biomarkers selected
by each optimal pair of signatures remains quite moderate, namely 23, 23, 29, and 8.

TABLE 2
Discrimination by Optimized Signatures: Performances on Colorectal Cancer Data

Discrimination between Gþ and G� based on our optimized signatures is evaluated by the frequencies pþ and p� of correct classifications within Gþ and G�. The pþ and
p� estimates, and their 95 percent confidence intervals are obtained by repeating 100 times a 10-fold cross validation procedure. Performances on colorectal cancer
data are given for single mass spectrum classification, as well as for two replicates classification (patient level).
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above, with windows size parameters set at u ¼ 0:0003; v ¼
0:017; w ¼ 0:025 and peak strength threshold th ¼ 2. On data set 4-
3-02, the baseline had been removed prior to publication. In both
data sets, all publicly accessible mass spectra had been pre-aligned
to a fixed list of 15,154 peak positions, which we also adopted as
our list of reference biomarkers.

Our signature based classifiers were then implemented sepa-
rately on the SELDI data sets 4-3-02 and 8-7-02 to discriminate
between Ovarian Cancer patients and Control patients. Classifica-
tion performance reached a plateau at biomarker target pool size
2k ¼ 22 for data set 4-3-02 and at target pool size 2k ¼ 8 for data set
8-7-02. Final performances were evaluated as above by repeated
10-fold cross validations.

For the SELDI data set 4-3-02, signature based classifiers
achieved correct decision frequencies of 95�4% for the ovarian
cancer group and 94�4% for the control group. These performan-
ces compare quite well with published results obtained on the
same data set by other algorithms, namely 96:5� 3:5% and
93� 6% in [4], 96:5� 3:5% and 97:5� 2:5% in [6], 90 percent and
83.3 percent in [23]. For the SELDI data set 8-7-02, signature based
classification reached 100 percent accuracy, which agrees with the
results of previous studies [6], [24], [25], [23].

6 CONCLUSION

A natural goal for computer aided discrimination between various
cancer stages or cancer types on the basis of proteomic “m/z” spec-
tra acquired by MALDI or SELDI mass spectrometers is to select
highly discriminating “signatures” gathering explicit small sets of
biomarkers. This is a delicate task due to the well known repeat-
ability and variability problems linked to proteomic mass spectra.
Potential applications include software tools for early clinical diag-
nosis, as well as disease progression monitoring and evaluation of
response to treatment.

A large number of machine learning studies have reportedly
achieved good automated classification performances for specific
data sets of proteomic mass spectra. Nevertheless, few machine
learning algorithms have been incorporated into routinely and
clinically usable software tools. This is in part due to the fact that
machine learning generates “black box” classifiers with low biolog-
ical interpretability.

In this paper we present and successfully test innovative algo-
rithms to perform automated discovery of optimized short bio-
markers signatures, to efficiently discriminate between given data
sets of MALDI or SELDI mass spectra associated to various cancer
stages. Our optimized signatures have the advantage of fairly
direct biological interpretability.

Automated computer search for highly discriminating bio-
markers signatures is an algorithmic problem with quite high
computational complexity. This motivates our innovative use
of simulated annealing optimization techniques to search for

signatures with high discriminating power. We have combined
this approach with efficient selection of target pools of potential
biomarkers, and thus implemented powerful software tools for
automated signature discovery.

We have first successfully tested our signature based mass spec-
trometry classifiers on a new experimental set of 238 MALDI-TOF
mass spectra acquired from patients at various stages of colorectal
cancer. Correct classification frequencies were good and compared
quite favorably with the performance levels achieved on the same
data set by four benchmark machine learning techniques: support
vector machines, K-nearest neighbor, decision trees, random forest.
Our signature discovery approach handles easy discrimination
tasks (colorectal cancer versus control) certainly as well as all other
machine learning techniques. For the more delicate discrimination
between three colorectal cancer stages, the performances of our sig-
nature based classifiers were statistically indistinguishable from
those of SVM, and these performance levels were clearly better
than those for KNN, DT and RF. However, our optimized signa-
tures had two key advantages over SVM: our signatures always
required less biomarkers than SVM to achieve similar performan-
ces, and generated explicit and fully interpretable classifiers,
instead of the black-box classifiers generated by SVM.

We have also tested our signature discovery techniques on two
published data sets of SELDI-TOF mass spectra acquired from
ovarian cancer patients. On these two ovarian cancer data sets, our
signature based classifiers performed very well, and either
matched or improved the performances achieved by other pub-
lished techniques.

A key feature of our optimized signatures is that they do pro-
vide short lists of discriminating biomarkers identified by their
“m/z” ratios. This is an important step to narrow down small sets
of high priority biomarkers, to be targeted in further experimental
studies or therapeutics research.

In future work, we intend to calibrate and test our signature dis-
covery technique on MALDI and/or SELDI data sets acquired on
breast cancer patients.
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